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The theoretical framework has been built for the subsequent use of rare-earth polarized
absorption spectra to provide direct structural information.

The technique developed earlier for simulating the polarized absorption spectrum of rare-
earth ions in various solid/liquid/amorphous materials has been improved. A refinement of
Judd/Ofelt theory has been used to simulate the polarized oscillator strengths between Stark
levels for rare-earths in a number of compounds. The experimental agreement is generally
good both for o- and w-polarization. For optically isotropic compounds, the polarization
average agrees well with experiment.

The energy matrix has been constructed using a standard Hamiltonian. The 364 x 364
energy matrices (for Nd3t and Er3*) are diagonalized directly. The crystal field has then been
calculated using an electrostatic multipole expansion of the rare-earth environment. Charge
neutrality and self consistent dipoles were achieved while the quadrupole contributions were
considered without achieving self consistency.

The molecular dynamics simulation technique has then been used to generate a number
of physically representative environments for the rare-earth ions. This has made it possible,
for example, to study the intensity contributions from rare-earth ions situated at centres of
inversion. These have been shown to be non-negligible for some transitions.

It has also been shown that configuration interaction (CI) effects are crucial for a suc-
cessful simulation of rare-earth polarized absorption spectra. The CI parameters, fitted to
reproduce experimental energy levels, have been shown to improve the eigenvectors.

A scheme for simulating polarized emission spectra and an assessment of the usefulness
of the method as a structural probe are also presented.
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Chapter 1

Introduction

The first rare earth (cerium) was discovered in 1803. The remainder of the elements of the
rare-earth series were identified over the next 110 years. Sweden, and more specifically the
village of Ytterby (near Vaxholm) in Stockholm’s archipelago, has played an important role
in the history of rare-earths since many of them were first discovered there, e.g. gadolinium
(named after Professor Johan Gadolin), holmium (latin for Stockholm), thulium (Thule is an
old word for the Nordic countries) and, of course, ytterbium, erbium, terbium and yttrium;
all were named after Ytterby itself.

The discoverers of the rare earths could never have imagined the variety of different
areas of application these elements would find. Optical, opto-electronic, magnetic and high-
temperature superconductors are just some examples. Amongst these, optical applications
are probably the most far-reaching, ranging from inorganic solid lasers, to scintillators, win-
dows and optical fibres. Neodymium (Nd3*) ions are probably the most commonly used
solid-state laser ions, with examples such as Nd*t:YAG and Nd?t:LiYF,, while erbium
(Er®t) is used in optical fibres since a minimum in the optical attenuation occurs at 1.6 um.
The many well-defined energy levels within the 4f shell make the rare-earth ions ideal as
laser ions because of the many possible laser channels. Up-conversion is also possible, in
which two or more lower-energy photons are used to excite a higher energy state, resulting
in emission at an energy higher than that used for the pumping. For extensive reviews of
rare-earth applications, see Weber [1] and Kaminskii [2].

The calculation of an absorption/emission spectrum for a rare-earth ion in some solid/
liquid/amorphous host material involves solving the Schrodinger equation, i.e. determining
the eigenvalues and eigenstates for the system. In the work reported in this thesis, only the
rare-earth ions have been treated by quantum mechanical methods, thus greatly reducing
the size of the calculation. The crystal field (CF) experienced by the ions is expressed as
an electrostatic multipole expansion, using contributions from mono-, di- and quadrupole
moments. The dipole moments have been calculated self consistently. Some might argue
that the electrostatic model is a gross oversimplification but, as will be shown, the motion
of the rare-earth ions and their neighbours introduce uncertainties in the CF parameters. It
is therefore reasonable to fully explore the result of using an electrostatic model.

Chapter 2 deals with the problem of labelling [" states or, in this case, 4f" states. This
was treated by Racah in the 1940’s in his four classic papers [3—6]. His first paper gives a
closed formula which replaces the so-called ”diagonal sum method” (developed by Slater [7])
for calculating the energy levels in two electron systems. In a second paper [4], he defines the
tensor operator and develops the appropriate tensor algebra (used throughout this thesis).

1



2 CHAPTER 1. INTRODUCTION

The fractional parentage coefficients were introduced in his third paper [5] and, in a fourth
paper, he uses group theory to label states and calculate the energy matrices [6]. The chapter
also gives a very brief introduction to Lie algebra and discusses the various groups of interest
for labelling [™ states.

In Chapter 3, the methods used for evaluating the different matrix elements are described.
Perturbation theory is used, with the totally degenerated 4f™ state (resulting from the
central field approximation) being taken as a starting point. Perturbation theory is indeed
valid for the rare-earth ions, since the 4f" shell is primarily screened by the outer 5s and
5p shells. Starting with the Coulomb interaction, the formalism used will be described up
to the different configuration interactions, which are included wvia second-order perturbation
theory. Chapter 3 deals also with the radial wavefunctions, and a presentation is made of
the methods used for handling the crystal field at each time step in the molecular dynamics
(MD) simulation. Some comments on numerical issues are also made.

Chapter 4 outlines the polarized oscillator strength calculations and the different mecha-
nisms involved. The theory for the polarized Stark-Stark level transitions is based on the well
known Judd/Ofelt theory [8,9], which is a highly successful quantitative theory for calculat-
ing unpolarized oscillator strengths between J-manifolds. The electric dipole transitions are
not parity-allowed, since the dipole operator is odd and therefore does not commute with
the parity operator w.! However, Judd and Ofelt showed that the crystal field mixes-in a
small portion of odd parity wavefunctions, thus allowing the (albeit small) electric dipole
transition. The inhomogeneous dielectric mechanism is also outlined. A short section at
the end of Chapter 4 concerns the differences, within this model, between absorption and
emission spectra. The last pages of Chapter 4 present some of the results.

Chapter 5 describes the molecular dynamics (MD) simulation technique used to simulate
the thermally induced fluctuations of the ions. Some results are presented. The importance
of using MD or Monte-Carlo techniques to calculate the polarized oscillator strengths is
emphasized.

A discussion of the potential use of the simulation technique is given in Chapter 6, and
a brief summary of the results obtained in Chapter 7.

The various expressions that appear in this thesis are not derived rigorously, but in a
somewhat sketchy manner; for a more complete treatment, the reader is referred to the
original work of Racah, Rajnak, Wybourne, Judd and others. The advent of powerful
computer facilities has meant that “simulation” can now be added to the two main areas:
theory and experiment. It is to this new area that the work belongs, although much effort
has also been made in the theoretical aspects of rare-earth optics.

Figure 1.1 gives a flow chart for the simulation technique used for calculating a polarized
absorption/emission spectrum, as developed in this thesis. The content of the boxes in the
flow chart will be explained in the thesis. Starting from some experimental structure (or
from a trial structure if relevant), appropriate molecular dynamics potentials are derived. It
is then a straightforward matter to run an MD simulation to generate a number of physi-
cally representative environments for the rare-earth ions. These different environments are
essential for a valid simulation of the crystal-field, and for the subsequent crystal field pa-
rameter calculation. The radial wavefunctions must also be calculated so that the shielding
parameters (0}), the radial integrals < 7* >, and the different polarizabilities (a(!), a(?) can
be calculated.

The energy matrix can then be constructed and diagonalized, to get the eigenvectors

!Since most Physics is hermitian, it follows that 7#'rm = —r, which is equivalent to [r, 7] = —27r # 0.
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Figure 1.1: Flow chart for the simulation of a polarized absorption/emission spectrum.



4 CHAPTER 1. INTRODUCTION

and the eigenvalues (Stark energy levels) for the system. These are then used to construct a
polarized absorption/emission spectrum.

A large portion of the thesis is devoted to the labelling of states and the construction of
the energy matrix. This explains the often technical and sometimes tedious sections in some
of the chapters. A number of texts and textbooks of atomic physics, quantum mechanics,
spectroscopy and general physics have been consulted throughout the work; these are listed
as references [10-31].



Chapter 2

Group theory and classification of
states

2.1 Introduction

The use of group theory and tensor operator techniques in spectroscopy have been treated
rigorously by Racah [3-6,32] and Judd [31]. Only a brief overview is provided here to give
some background to the quantum numbers and coefficients of fractional parentage (CFP)
used.

It is well known that the Schrodinger equation is not solvable for most many-body prob-
lems. Perturbation theory must therefore be used to calculate the energy levels and eigen-
vectors for a f" system. The central-field approximation is used to find the zeroth-order
eigenvector (ground-state) on which to base the perturbation theory. In this approximation,
the field from the nucleus (infinite mass point charge) and the mean field from all inde-
pendently moving electrons in the system (57 in the case of Nd®*) are superimposed. The
approximate solutions to the Schrédinger equation can thus be written in the form:

$(r0p) = r~ Ryy(r)Yim, (09) (2.1)

since the resulting potential is spherically symmetric. At this stage, the energy levels char-
acterized by the quantum numbers (nl) are highly degenerate. Once again, taking Nd** as
an example, the unfilled 4f3 configuration can be 364-fold degenerate. The degeneracy is
lifted by various Hamiltonians. Eq. (2.1) will be the starting point for the application of
perturbation theory. Since we are only interested in the eigenstates and eigenvalues of the
interior of the 4f™ configuration, perturbation operators which move the configuration as a
whole can be neglected, i.e. the energy corresponding to the degenerate 4f™ configuration is
set to zero.

The first perturbing potential is the coulomb interaction (Hgr) between the 4f™ elec-
trons. The effect of this Hamiltonian is to split the 4 f™ configuration into terms characterized
by the quantum numbers (ySL); S is the total spin angular momentum, L the total orbital
angular momentum of the configuration; we shall return to v a little later; (SLMgMy) are
good quantum numbers since, [S,, Hgr] = [S?, Hgr] = |L,,Hgr) = [L?, Hgr] = 0. The
next perturbing potential is the spin-orbit interaction (Hgsp). Hgo splits the terms into
multiplets characterized by (ySLJ). Note that the quantization has been changed from
SLMgM;y to SLJMj, since Hgp does not commute with S and L separately, but with their
resultant J = S + L; (ySLJMj) are the quantum numbers used throughout and will be the

5



6 CHAPTER 2. GROUP THEORY AND CLASSIFICATION OF STATES

starting point for the following discussion. Later in this work, further perturbing Hamiltoni-
ans will be introduced, such as the crystal field Hamiltonian and the different configuration
interaction Hamiltonians.

When performing calculations of the type described above on systems with more than
three (or equal) electrons, (SLJMjy) will not specify the states uniquely, i.e. the situation
can arise that two states (1,2) have the same quantum number, (SLJMj)1= (SLJMy)s.
This is where v is introduced to distinguish these states. It is natural to turn to group
theory when looking for the quantum numbers (vy), since (SLMgM;,) have attractive group
theoretical properties. For example, the 2L + 1 (Mg, = —L,...,L) components of a term
transform according to the representation (representation matrix) Dy, of the group R3 when
rotated in three-dimensional space. This is natural, since the eigenfunctions of L (spherical
harmonics) are a basis for the representation of the group of all rotations in three-dimensions.
(R3) and (LM7p) can thus be used to label the representation:

R(afy) (LML) = Y (L' My)Dit y , (aB) (2.2)
L’MLI
where
Difar,, (@fy) =< LMy | R(epy) | L'Mp > (2.3)
and
R(afy) = e~talz gLy g=ivLs (2.4)

2.2 Lie groups

The application of Lie’s theory of continuous groups to the problem of labelling the states
has been most successful. Lie showed that, if

X, = ug% (2.5)
are the infinitesimal operators of a group, and X, satisfy the commutation relations

[(Xo, Xp] = c5, X, (2.6)
the operators

14 da° X, (2.7)

form a group. The labels of the irreducible representation can then be used as labels of the
states. cj, are the structure constants, and these determine the properties of the group. uy
can be seen as a generalized velocity field. This term is better understood when looking at

the types of infinitesimal transformation that Lie studied:
of'(z",a%)
0a?
fi(z',a) are the transformations, and a’ the parameters of the transformation.
The four classic papers of Racah [3-6] introduced the tensor operators which have turned
out to be very useful tools in, for example, spectroscopy. He also applied the theory of con-

tinuous groups to the problem of labelling states. The irreducible spherical tensor operators
of rank k, Racah [4], Eq. (23a) and (23b), are defined as:

7'+ dr' = z' + ( ) 6a® = 1 + ul (2)da’ (2.8)
a=0

(Lo £L,), TM) = /(k F ) (k + ¢ + DT, (2.9)
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L., TF] = TP (2.10)
Note that Tq(k) have the same commutation relations as the spherical harmonics. The tensor
operators defined in Eq. (2.9) and Eq. (2.10) satisfy commutation relations of the type
Eq. (2.6); this will be shown below. As a consequence, the infinitesimal operators of the
corresponding group can be used to find the quantum numbers (). This is completely
analogous to the case of R3 with the infinitesimal operators L and the quantum numbers
(LMp). It is indeed true that a group G can be found which contains R3 as a subgroup,
and that the labels of G’s irreducible representations can be used as quantum numbers ()
to label the states. Before identifying these subgroups and irreducible representations, the
commutation relation for irreducible tensor operators will be demonstrated. First defining
the unit tensor operator from:

<n'l'|| u® || nl >= 6,pdp, (2.11)

Using the Wigner-Eckart theorem Eq. (A.2 in Appendix A), the unit operator Eq. (A.1),
the orthogonality relation Eq. (A.5), and the formula for the sum of the products of three
3j symbols Eq. (A.7), it can be shown that!:

k2) | Imy >= Z(—1)l—m2( _in; ’(Z bel ) | Im) > (2.12)
m
u((h (k2 | lmy >
_ Z ( 1)2l—m;—m;’< l kl l )( l k2 l ) | lm" S
mjm! —my g omyp )\ —my g2y :
" ki ko k l ks 1
— _1\3l—m; —q3+k1+ka+ks3 1 2 3 3
2 (T P )
m}'k3qs !

% (kl k2 k3>|lm;’>
q1 492 —g3

ki ko k ki ko k
— _1\2l—g3+ki+ka+ks 1 2 3 1 2 3

kg3 a1 92 —q3
X u((;;?’) | Imy > (2.13)
The only difference between ug]f )uq2 | Im; > and u(kQ)ug]fl | Im; > is the phase (—1)k1Tk2+ks
which originates in the symmetry properties of the 3j- symbol; see Eq. (A.8). The commu-
tation relations for irreducible tensor operators thus become:

(k k
[u 1)’u((12 )] = capugss) (2.14)

with the structure constants [0 = (k1¢1), p = (k2g2) and 7 = (k3g3)]:

Gy = Llkal(-pPenf(-piitie g B R B (sl g5

kags qQ q2 —Qq3

'[k]=2k+1



8 CHAPTER 2. GROUP THEORY AND CLASSIFICATION OF STATES

Clearly, Eq. (2.14) has the same structure as Eq. (2.6), and the tensor operators u,(lk) or

Uék) = Zi(ugk))i (the sum runs over all electrons) will therefore serve as the infinitesimal
operators of a Lie group, with its properties determined by Eq. (2.15). Analogous to Eq.
(2.7), the operators

1+ Y dag UL (2.16)
kq

will form a group in whose irreducible representations we are interested. Notice that the
symmetry properties of 65 and 35 symbols place the following restrictions on &k and ¢: 0 <
k < 2l and —k < ¢ < k. By investigating matrix elements of Eq. (2.16) and imposing
restrictions on the transformations [Eq. (2.16) in matrix form]|, Racah [6,32] and Judd [31]
obtained the following succession of groups and subgroups in 2/ + 1 dimensions:

GLgiy1 D Ugq1 D SUzy1 D Ryq1 D R (2.17)

where GL is the full linear group, U is the unitary group, SU is the special unitary group
or unimodular group (only transformations with determinant +1 allowed) and R is the
rotation group or proper real orthogonal group. In the case of I = 3 (f-electrons), yet
another subgroup of R; could be found, G3. The succession of groups and subgroups now
becomes:

GL; DU; D SU; D Ry D Gy D Ry (2.18)

According to Racah [6], the irreducible representations of R; and (g, characterized by
W = (wiws...w;) and U = (ujug), can be used as the additional quantum numbers
[y =WU = (wiws ... w;)(ujuz)]. Table I, given by Judd [31]2, shows the quantum numbers
for the case of f3:

Table I. Quantum numbers for f3

[Yive---v7] | (wiwows) | (uiug) | L
[1110000] (111) (00) | S
(10) | F
(20) | DGI
[2100000] (100) (10) | F
(210) (11) | PH
(20) | DGI
(21) | DFGHKL

[7172 - - - 7] are the irreducible representations of U;. These irreducible representations can
be dropped, since they are equivalent of specifying (5), and the f? (or f!!) states are now
completely defined by:

| 3 (wiwows) (uyug) SLIMy > = | fAWUSLJM; > (2.19)

Yet another quantum number (7) must be added in Eq. (2.19) for the case of f57:89 gince,
for example, (221)(31)F occurs twice. This is seen from Table 5-3 in Judd [31].

>Table I can be constructed from Table 5-1, 5-2 and 5-3 of Judd [31]
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2.3 The coefficients of fractional parentage (CFP)

Racah not only applied the theory of continuous groups to the problem of labelling states, he
also introduced coefficients of fractional parentage (CFP) in the third of his four papers [5].
Once calculated, these coefficients greatly simplify the work of calculating different matrix
elements. Racah’s idea was first to couple two equivalent electrons, and then study the effect
of adding another electron [ to the allowed states (antisymmetric eigenfunctions, S+ L even)
of 12 [5]. Three different schemes can be used to add three angular momenta: (I; + l2) + I3
or I1 + (la +13) or (I1 +13) + 2. Changing the schemes for the addition of angular momenta,
using Eqgs. (3)-(7) of [5], Racah concluded that?:

| P(S'L)ISLMsMy > = > |1L1(S"L"), SLMsM >
SIILII
x < LUS"L"),SL|1*(S'L")ISL > (2.20)

Eq. (2.20) could not be an eigenstate of I? since some states would have values of S” + L"
forbidden by the Pauli principle (odd values), and therefore be symmetric. [For the left side
of Eq. (2.20), the two electron parts (/1 + l2) were constructed to be anti-symmetric since
only states with S’ + L’ even were retained. This is not the case for the two-electron parts
(I2+13) on the right side, since no restrictions are placed on S” + L"; S” + L" could therefore
be odd]. However, a linear combination of Eq. (2.20)

| BySLMsMyp, > = Y |1*(S'L')ISLMsM;, >< I>(S'L')ISL |}°ySL > (2.21)

S'L!

with vanishing coefficients (< I2(S'L')ISL |}13ySL >) for S” + L" odd solves this problem.
It is then straightforward to decouple the third electron from the ket on the left side of Eq.
(2.21). With Eq. (1) of [5], we obtain:

| 3ySLMgM;, >= > | 128 L' ML M), >| slmgmy >

S'L' MG M) mgmy

s’ S L' 1 L
X ( 3 ) ( ) < I2(S'L')ISL |}*ySL > (2.22)
Mé mg S Mi my L

This equation will be shown to be very useful in calculating different one-particle operator
matrix elements. Eq. (2.20) in Eq. (2.21) gives the following equation for the coefficients
when S” + L is odd:

> <L,u(s"L"),SL | P(S'L')ISL >< 1*(S'L")ISL |M*ySL >=0 (2.23)
s
Eq. (2.23) can be used when calculating the CFP’s for /3. An equation corresponding to Eq.
(2.21) can thus be formulated for the case of I":
| I"ySLMsMp > = > |I"'(y/S'L')ISLMsMy, >
,),ISILI
x <1 Yy'S'LNISL |M"SL >
= > | " 2(y" 8" L") (S L)) ISLMs My, >
’Y’SILI’)’”S”L”
< ln*Q(,yllslILll)llel |}ln*1,yllel >
<" Y4'S'L)ISL |}"ySL > (2.24)

3Hereafter, the quantum numbers MsM7, will be omitted when of no importance.
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It is not necessary to proceed further in the recursion relation Eq. (2.24) when using one-
and two-particle operators. Three-particle operators (operating in the same space) can be
dealt with by using other methods, as will be shown below [Eq. (3.24)]. Note that () in
Eq. (2.24) also includes (7) for the reasons mentioned above.

For the explicit evaluation of the CFP in the case of 43, see Appendix C.



Chapter 3

The energy matrix

3.1 The Hamiltonian

This chapter will deal with the construction of the energy matrix and the evaluation of the
different matrix elements used in papers II, IV, V and VL. In paper I, the energy matrix
was constructed without the use of CFP, making this process excessively tedious. Neither
was a complete matrix constructed; only a small part of it (jj-mixing and L, S mixing were
known to be small for the levels studied there). CI effects were introduced in paper IV.

As indicated in the preceding chapter, perturbation theory is the technique used to
approximately solve the Schrodinger equation. It was found that, as a result of the central
field approximation, Eq. (2.1) can be used as the completely degenerate starting point for
perturbation theory. In Eq. (2.1), the radial and angular parts are separated, implying that
the radial and angular matrix elements can be calculated separately. The Hamiltonian used
throughout the calculations is written:

H =Hy+ Hgr, +Hso + Her + Her + Herneg (3.1)

where Hy is a spherical symmetric interaction and can therefore be omitted since it only
shifts the whole configuration; Hgy, is the coulomb interaction; Hgo is the spin-orbit inter-
action; and Hcp is the crystal field interaction responsible for the majority of the interesting
phenomena discussed in this thesis. Horp represents linear configuration interaction effects
associated with two-particle interaction terms; and H¢ryr non-linear configuration interac-
tion effects associated with three-particle interaction terms.

3.1.1 The coulomb interaction (Hgr)

The coulomb interaction between 4f electrons is described by (e = 1):

Hy = Y- =3 % ZilP““ (cos 03;)

1<j Z i<j k rs
rk drx .
= > qu ZYq ) (0:4:) Y P (0;5)
i<j k T> q

= Y3 S S Enret)ie);

i<j k > q

! Atomic units will be used throughout.

11



12 CHAPTER 3. THE ENERGY MATRIX

ZZ k+1 k C]('k)) (3.2)

i<j k 7>

where 1/ | ; — r; | has been expanded in Legendre polynomials of cos 6;; and the spherical
harmonic addition theorem has been applied. Eq. (3.2) can be expressed in a slightly more
convenient form (for 4 f matrix elements) using Eq. (2.11) and Eq. (A.2):

Hpr =Y 5 == et u By (< flIe® | > (3.3)

i<j k >
Note that Eq. (3.3) vanish unless 0 < k£ < 6 and k is even (3 — j symbol). Eq. (2.1) suggest
that the matrix elements of Eq. (3.3) can be written in the form:

<Af"W'U'T'S'L'MgMy, | Hpr | Af"W'U'TSLMsMp >= Y fiF* (3.4)
k=2,4,6

since the radial and angular parts have been separated. The reason for excluding k = 0 is
that this term only shifts the whole conﬁguration. F* are the well-known Slater integrals:

/ d‘l"R4f / d’l" R4f Ik+1 (35)

The angular coefficients f; can be evaluated by noting that f; is essentially the matrix
element of (u(®) . 4(*)):2

fe = S < rfwusMiMy | W ) | FWUSLMsM >
1<j
x |<fICW | f>P
= 6> < fWU'SLY{| fA(SL)fW'U'S'L >< f*(SL)fWUSL |} f*°WUSL >

SL

OLLOMy My, \Iifirvo [i7s L L 0

A L0z L }
T 11 1

[ L][L]

where Eq. (2.21), Eq. (A.2) and Eq. (44a), Eq. (38) of Racah [4], and the following
equations have been used?:

0P () = s, (37)
L L 0y _(-n-tr+ 28

{L L l} [L][L] (3:8)
, po Uk

<tfe® = yim( ) (3:9)

*Hereafter, all calculations will be made for the simplest non-trivial configuration: f3 (f'').
S<L|| X°|| L>=+/[L]< LM | X0 | LM >
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3.1.2 The spin-orbit interaction (Hgo)

The third term in the Hamiltonian is the spin-orbit interaction term. The well-known form
of Hgo is obtained by studying the non-relativistic limit of the Dirac equation for an electron
in an electromagnetic field. This is done by successively performing three Foldy-Wouthuysen
transformations on the Hamiltonian. Fach of these canonical transformations is followed by
a non-relativistic expansion of the transformed Hamiltonian. Details of this technique can
be found in Bjorken and Drell [33]. The spin-orbit operator for a spherically symmetric
electrostatic potential becomes:

3
Hso=(Y si-l; (3.10)
i=1

where ( is the spin-orbit coupling constant. Rewriting Eq. (3.10) results in the slightly more
convenient form:

3
1 1
Hso=¢Y (0" -u) <slls||s>< 1] f > (3.11)
i=1
where vgl) and ugl) act in spin and angular-momentum space, respectively. The matrix

elements of Hgp cannot be evaluated in the vSLMgM;j, representation since Hgo does
not commute with S and L separately®, but with their sum J = S + L. In the ySLJM;
representation, the matrix element of Eq. (3.11) becomes:

<W'U'S'L'J’'M, | Hso | WUSLJMy > (3.12)
! ! L’ L 1
= C<5J'J(5M'JMJ3(—1)S+L+J{ s J’}
x > < PWUSL{| fA(SL)fW'U'S'L >< f*(SL)fWUSL |} f*WUSL >
SL
) i \S+stsi+iifer [ 5085 1 [ r1
e
X \/s(s + D[sIf(f + D[] (3.13)

where Eq. (38), Eq. (44a) and Eq. (44b) of Racah [4], Eq. (2.21), s=+/s(s + 1)(2s + 1)v(})
and 1= /(1 + 1)(2I + 1)u") have been used.

3.1.3 The crystal field interaction (Hcr)

The fourth term in the Hamiltonian is the crystal field interaction term. When rare-earth
ions are situated in some solid/liquid/amorphous material, they will experience the effects
of the crystal field. The crystal field Hamiltonian can be treated by perturbation theory in
considering its effects on the partially filled 4f shell, since this shell is screened by the filled
outer 5s and 5p shells. Assuming the validity of Laplace’s equation in the region between

4This means that S and L are not good quantum numbers and can therefore not be used to label the
eigenstates, i.e a solution to the Schrédinger equation cannot be found in this representation.
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the ions, i.e. no radial overlap, the crystal field potential can be expressed in a multipole
expansion. Hop is given by [analogous to Eq. (3.2)]:

!
Hep = /dr’| p(r') S4BTkl < 1 C® () || f > (3.14)

—pt |
r—rl| o -
where Agk) are the crystal field parameters, given by:

r C(k) o
A((Ik) :/drlp( Zﬂ/kil( ) (3.15)

The different physical environments experienced by the rare-earth ions are characterized
through the crystal field parameters A((]k). These CF parameters will be further discussed
later. It is seen that the the matrix elements of Hop are proportional to the matrix element

of the unit tensor operator and therefore become:

< AW'U'S'L'J'MY | Her | fPWUSLJIMy >

_ % A;(k); <k (_1)J'M'J< _*L 5 ’; J\*JIJ ) v (_1)S LT

X { ]3/ 5, g }\/m Z, < PWU'S'D| FASLIW'U'S'L! >

< fASL)fWUSL |} fSWUSL > (—1)lH+1+k [L][L’]{ 1]; j{j j’i }

< (D0 (3.16)

where Eq. (3.9), Eq. (44b) of Racah [4] and Eq. (2.21) have been used.

3.1.4 Configuration interaction (Hc;rr, Heryy) and other interactions

The fifth and sixth terms of the Hamiltonian are the linear and non-linear configuration
interaction terms® (paper I'V). These were parameterized during the 1950’s and 1960’s by
Bacher [34], Trees and Jgrgensen [35-38], Racah [39], Rajank and Wybourne [40, 41] and
Judd [42]. Up until now, only first-order perturbation theory has been used. However,
second-order perturbation theory must be called upon to address the problem of CI. The two
extra terms appearing in the Hamiltonian (associated with 2-body and 3-body interaction,
respectively) are:

Herr = al? + BG(G2) + vG(R7) (3.17)
Hoinp = ), 6T (3.18)
i=2,3,4,6,7,8

Rajnak and Wybourns [40] have derived formulae that account for the following one- and
two-electron excitations:

5These terms belong to the free-ion Hamiltonian, as opposed to Hor discussed previously.
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’l) leZZIQ and ZN72lllll

“) ll4l’lN+2 and ll4l’+llu4l”+llN+2
Z'l'l) ll4l’—|—llNlII

iv) N

v) l/4l’+llN+1

i1), 141) and v) are core excitations (4] + 2 electrons in a filled shell). Rajnak and Wybourne
showed that, when including the above excitations (via second order perturbation theory),
only matrix elements proportional to the following two- and three-particle operators need to
be evaluated:

< fwrs's | (@ W) | PwUsL > (3.19)

1<j
where k =1,2,...,6.

<PWUSL | Y {uP el EuENO | PwusL > (3.20)
hiti]

Note: that the integrals are evaluated within the 4f space. The CI effects proportional to
Eq. (3.19) are referred to as the linear configuration interactions, since this effects can be
added linearly within the theory; CI effects proportional to Eq. (3.20) are referred to as
the non-linear configuration interactions. The matrix elements of Eq. (3.19) with k even
are proportional to the Slater integrals and need therefore not be treated further, since the
effect is absorbed in the fitting procedure. Matters simplify considerably for k-odd situation
when using Eq. (24) of Racah [5], Eq. (19) and Eq. (27) of Racah [6], and the result of
Appendix D. From Eq. (D.10) - Eq. (D.12), it is clear that the linear CI effects for k-odd are
proportional to the Casimir operators for the groups R7, G2 and R3. The radial parameters
a, § and 7y of Eq. (3.17) are therefore the only additional parameters needed to take account
of linear CI effects. The eigenvalues of the different Casimir operators are given by Eq.
(D.15) - Eq. (D.17).

The parametrization of the non-linear CI effects Eq. (3.18) has been given by Judd [42].
Judd introduced the t; operators (using a slightly different notation) as:

t(WU) = > <kK'E'|WU > U(kk'E") (3.21)
kklk”
where U(kk'k") is a triple-tensor given by:
LI GG G D S R
oo h i J )

0.4'+q" 9 9 9 7 hti#j

[e.g. Eq. (3.20)]. The matrix elements of this operator can be evaluated using the following
formulae; see Rajnak [41] and Tables VI, VII of Judd [42]:

<Pt WU) | ¢ >= Y <kK'E" | WU > ([kK][K][K")"/?
kklkl!
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kK K 2
3 (5 ) <ol S o >

odq 9 4 q" hyij
kKK
- (K)\2 | (K)N\2 [ !
{f . }[<w|<u Rl >+ <] @2 |4 >
+o<w ] @29 > =3 2N/ (329

where the matrix element of the triple tensor operator is given by:

<¢|Z{u k" k’) (k))0)|¢>

h,i,j

D U . — " -
! B R R P
A
x <@ [t |4 > /L (3.24)

The matrix elements of the double tensor operators appearing in Eq. (3.23) are essentially
the same as in Eq. (3.6), and the matrix elements of the single tensor operators appearing
in Eq. (3.24) are essentially the same as in Eq. (3.16).

There are several more Hamiltonians to be considered in a more elaborate calculation, e.g.
the spin-spin (Hs;), spin-other-orbit (Hs,), and CI effects on the spin-orbit (H.;) Hamilto-
nian. These operators will give rise to the additional parameters M* (Marvin integrals) and
P*: see Judd, Crosswhite and Crosswhite [43,44] for more detail. Rajnak and Wybourne [45]
investigated the effects of CI on crystal field effects and concluded that these should be small
for the rare earths. None of these last four effects has been treated in this thesis.

Other papers not referred to so far but nevertheless important for the energy matrix are
given in [46]; or those important for the parameter fitting procedure in [47].

3.2 The radial wave functions

So far, the theory has treated only the angular part of Eq. (2.1); The radial part remains
to be accounted for. All parameters in the preceding sections are different types of integrals
over the radial wave functions. If these could be computed correctly, we would have achieved
a “first-principles” treatment. We, as others before us, have found (paper ITI) that the radial
wave functions calculated with standard Hartree-Fock codes® give values which are too small
(large Slater integrals). The values of integrals of the type < r*¥ > are acceptable (at least
for k < 4) since these are not especially sensitive to the shape of the wave function. However,
in attempting to calculate (for example) the Slater integrals (F*), the results are certainly
not satisfactory.

6We have used different approaches using a standard Desclaux code, the well known code of Cowan and
the Froese-Fischer code (Parpia et al. [48]).
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3.3 The crystal field parameters (A})

The treatment of the crystal field and how it interacts with the rare-earth ions should be
seen as the most important part of this thesis (paper II). If the CF model used is selected
carefully, the potential range of application of the calculation method described can be very
large. It was shown in Section 3.1.3 that rare-earth ion interactions with the surroundings
can be described through the crystal field parameters A((Ik), provided 1/(r; — rj) can be
expanded in Legendre polynomials. If there is no radial overlap, i.e. Laplace’s equation
is satisfied between the ions, the charge density that the rare-earth ions experience can
be expressed in an electrostatic multipole expansion. This approximation is not too crude
for ionic compounds but other techniques must be used when considering more covalent
materials; e.g. the standard linear combination of atomic orbitals (LCAQ) approach. The
compounds studied herein can be considered as ionic, for which the electrostatic model
should therefore be fairly adequate. The electrostatic model is often criticised for its lack
of sophistication. However, as will be shown later, more severe problems exist than those
associated with the amplitude of the static correction; more sophisticated models may be
found in [49-54]. The A,(Ik) parameters are defined by the integral:

r)CSP) (i
AP = —/dr'ip( l,til( ) (3.25)

In the electrostatic model, p(r') can be expanded as a sum of 2"-poles (n=0,1,2,...). A((Ik) is
thus given approximately by Burns [55] (paper II, III):

e had e i
A= (M}")r;- LD (b )r R 242 Q) (ke ) (k2 3+...>c§k>(7«j)(3.26)
J

where M D) and Q@ are the components of the mono-, di- and quadrupole moments,
respectively. Following Faucher and Garcia [56], these are given by:

D; = 7D, (3.27)
Q = 7'Qy (3.28)

7 is the unit vector directed from the rare-earth ion towards the the neighbouring ion; s and
t are indices for the vector and tensor components, not to be confused with ¢ or 7 which
label the ions:

MO = g (3.29)
b = oy v i pyv L gPvvv ! (3.30)
' ' |7y | |7 | | 75 |
j#i %] L) tJ
2% _ @ { 1 . po 1 }
Qi = o> vv|ﬁj|+Dj vvvmj| (3.31)

J#i

The A((Ik) parameters must be corrected, since the closed shells of the rare-earth ion will not
remain unaffected when exposed to the crystal field. This correction is taken into account by
a redefinition of the CF parameters: Agk) —)(1—ak)Agk), where oy, are the shielding parameters
(paper III).

The summation (3.26) is performed until convergence of the A((Ik) parameters is achieved.
The dipole and quadrupole polarizabilities used are obtained from the ab initio calculations
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of Schmidt et al. [57] and Mahan [58] (paper III). All dipole moments are calculated self
consistently, i.e. electrostatic equilibrium of charges and induced dipoles at each ion-site is
assured. This is accomplished by rewriting (3.30) and solving the linear system of equations:

_ — -1 _
bW = (1+a(1ﬁ) oV B (3.32)

oM E!; is given by

1 = 1
_a§1>z{v__+Q§. 'Yvv - }
T U7 | 7ij |
and ?ij is given by:
= 1 1 — r..p;..
T, = -vvi -1 (1 _ 3—%;"“) (3.33)
| 7ij | Tij Tij

The Ewald method (paper VII) would, of course, be preferable to direct summation. This
technique for performing infinite lattice sums will be implemented in future work.

3.4 Diagonalization and numerical detail

There is no doubt that some numerical difficulties will be encountered when performing this
type of simulation. For the cases of Nd** or Er®t, the energy matrix have 3642 = 132496
matrix elements; expression for each of these has been given above’. Since almost all Physics
is hermitian, only half of the matrix has to be evaluated using the preceding sections. The
other half is simply the complex conjugate of the corresponding elements mirrored in the
diagonal. The LAPACK routine ZHEEV has been used for diagonalizing, and the LAPACK
routine DEGSV has been used to solve the system of linear equations encountered in Section
3.3. The calculations where performed primarily on a number of Pentium PRO 200 MHz
processors. A typical simulation (including MD and the calculation of oscillator strengths) of
a polarized absorption spectrum with contributions from 200 different environments would
need approximatly 2 weeks on 3 processors of this type.

The biggest numerical challenge, however, was the calculation of the shielding parameters,
and the dipole and quadrupole polarizabilities. Details are presented in paper III of this
thesis.

Figure 3.1 shows the free-ion energy matrix for Nd3T after diagonalization. It is seen
that the lower energy states have a low level of mixing, so the problem with labelling is not
so severe. The situation is more serious for the higher energy states, where the eigenvectors
are a mixture of many states.

"For the rare earths with more complicated 4f structure, the number of matrix elements is even larger:
4f%1° 5 1002001, 4f5° — 4008004, 47%% — 9018009, 4f7 — 11778624.
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Figure 3.1: The free-ion eigenvectors for Nd*+. The x and y axis shown the term number (41 for
Nd3+).
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Chapter 4

The oscillator strengths;
absorption/emission spectra

4.1 Introduction

In 1962, Judd [8] and Ofelt [9] published their classic papers which outlined the theory for
electric dipole transitions between J-manifolds in the 4 f shell of rare-earth ions. This theory
has been quite successful in predicting oscillator strengths. In these calculations, only the
electric dipole mechanism and inhomogeneous dielectric mechanism have been considered;
the latter is sometimes small. The contributions from electric quadrupole and magnetic
dipole transitions have not been included, since these are usually one order of magnitude
smaller. In the first footnote of this thesis it was shown that the position and parity operators
do not commute ([r,7] # 0, {r,7} = 0). This implies that electric dipole transitions are
parity forbidden within the 4 f shell. This is easily shown:

<’i|’l"|f>:<’i|7Tt7TT7TT7T|f>:€Z'€f(—<Z.‘T|f>) (4.1)

which can only be true if ¢; and e; have opposite signs, i.e. < i | and | f > have opposite
parities. That transitions take place between eigenstates of opposite parity is known as the
Laporte’s rule. As a consequence, non-zero matrix elements for the dipole operator can only
be accomplished if the eigenstates have a small addition of opposite parity. This is indeed
the case and is a result of the crystal field experienced by the rare-earth ion.

4.2 Judd-Ofelt theory and refinements

Judd and Ofelt showed that the matrix element of the dipole operator
DY =3 G (#) (4.2)
J

which includes the addition of opposite parity states through first-order perturbation theory

[using the odd part of the crystal field operator (A,(Zk) with k£ odd)], can be expressed as a
matrix element involving only 4f states. The closure approximations used are considered to
be accurate.

The expression they obtained is:

P= Y Tw|<AWUSL || UV || FWUSL >|? (4.3)
A=2,4,6

21
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where

8m2m[\]
T =
AT XTRR[] ;

—2
(=)
—

&P (4.4)

The factors 3 and [J] in the denominator come from the fact that the polarization is averaged
out, and that all Stark levels are assumed degenerate.

! !
=00 = 2SI l+l’{1)\k}(lll>(lk1)
o r vt ooo/\o oo

<nl|r|nl ><nl|r*|nl' >
AE((n'l")

Note that the radial wave functions and energies must be obtained from elsewhere, usually a

Hartree-Fock calculation; y is the Lorentz local field correction, given by x = (n?+2)%/(9n),

once the refractive index (n) is known; m is the electron mass, and v the transition frequency.

As pointed out above, Eq. (4.3) gives only the unpolarized oscillator strength between

the J-manifolds. If the polarized oscillator strengths between individual Stark levels are to be

calculated, this equation needs modification. Such a modification has been given in [59-63]

(papers I and II). The polarization was averaged out in [59,61]. Following Edvardsson [63],
the formula becomes:

(4.5)

1 87%mv e~ Fi/ksT
Ppo= ox——I< i| D! |f>|2w (4.6)
where
<i|D®M | f>
1 A k
= S e (N Jatag-nho
Akq'if q9 —q—49 ¢q
J; A J
x ( ' ! ><f3W'U’S’L’J’||U NFAWUSLJ > E(k, \) (4.7)
—M; ¢ +q M;

The factor 1/2 in Eq. (4.6) is due to the Kramer degeneracy. The coefficients a; and ay
are the components of the eigenvectors (paper I). Note also that Eq. (4.6) is only valid
for absorption, since the ground state levels are assumed to be Boltzmann populated. A
corresponding equation for emission can be obtained, see below; Z(k,A) is given by Eq.
(4.5), and the reduced matrix element of the unit tensor operator, which is essentially the
same as Eq. (3.16), is given by:

< PW'US'L T UN| P WUSLJ >

, L L' X
— (_1)S—|—L +A-J [J][J']{ PR }
x > < PWUSL{| fA(SL)fW'U'S'L >< f*(SL)fWUSL |} f*WUSL >
SL
NG A ®

< | and | f > are the initial and final eigenstates for the rare-earth ion.
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4.2.1 The inhomogeneous dielectric mechanism

In addition to electric dipole transitions, the inhomogeneous dielectric mechanism (IDM) of
Jorgensen and Judd [64,65] has also been considered (papers IV and V). The IDM is based
on the assumption that the radiation field induces oscillating dipole moments in the ligands.
The CF seen by the rare-earth ion will therefore have a stronger quadrupole component than
would be expected. This will, in turn, allow even-order electric multipole transitions within
the 4f shell. In addition to Eq. (4.7), the following matrix element, given by [62, 66,67],
must be evaluated:!

<i|WIPM | f>

= 3 /WO DRI - oA (L Y cnfe )

T 00 0

1 A A+1Y i A J
x ( ) . )aZ alf(_l)Jz M'L ( 1 I f )
g —¢—q ¢ -M; q+q My

x < PWUS'LT|UN|PPWUSLT > (4.10)

where A((Ilf)IDM is given by:

Ag’,c)IDM = Zaj’l‘;ikilcéfc) (f‘]) (4.11)
J

The reduced matrix element of the unit tensor operator is given by Eq. (4.8). No ex-
traordinarily strong contributions from the IDM have been seen in this work. This might
indicate that the IDM is not responsible for the hypersensitivity observed for certain tran-
sitions. Molecular dynamics (or any equivalent method) should be used instead to simulate
the various environments of the system directly; see Edvardsson [63, 68] for a more rigorous
discussion. In this way, no new mechanism need be introduced to explain hypersensitivity.
This aspect will be returned to later.

4.2.2 Other effects

Electric quadrupole and magnetic dipole transitions have not been considered since these
are believed to be very weak in most cases. A rigorous calculation should, of course, include
such effects.

If the compound under investigation is optically isotropic, oscillator strengths can be
averaged over ¢ and calculated according to:

1
P = - P, 4.12
3; q ( )

In standard Judd-Ofelt theory, 2y are the parameters of interest; 2) are given by:

(k)':' 2
Q, = [A]ZW (4.13)

kq’'

!This matrix element is rather different from the original Judd/Ofelt calculation, since no opposite-parity
states have to be mixed-in here.
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4.3 Absorption/emission spectra

As noted above, it is not difficult to pass from absorption to emission once Eq. (4.6) is
known. The major difference between absorption and emission is the population of the
states. A standard Boltzmann population is assumed for absorption. This will not be true,
however, for the excited states, where the population must be calculated. Luckily, Eq. (4.6)
compares well with experiment [if the energy matrix is calculated according to Chapter (3)].
This means that the population of the excited states can be obtained from Eq. (4.6), after
renormalization. The scheme for calculating emission transitions becomes:

1) Calculate and diagonalize the energy matrix.

2) Calculate the polarized absorption oscillator strengths.

3) Populate the excited states according to the results of 2).

4) Use Eq. (4.6) with the Boltzmann factor replaced by 3) to compute the

polarized emission oscillator strengths.

4.4 Results

The calculation of o- and 7w-polarized absorption spectra is demonstrated for Nd3T:LiYFy
(papers IV and VI), Nd*":YAG (papers II and IV), Nd2O3 (paper VI) and Er*t:Y,03
(paper V). With the exception of NdyO3, these calculated spectra are compared with exper-
iment. CI effects and electric-dipole and inhomogeneous dielectric mechanisms are included
for Nd3+:LiYF,, Nd3T:YAG and Er3*:Y,03. No CI effects have been considered for Nd,Os,
nor has the inhomogeneous dielectric mechanism been taken into account.
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Figure 4.1: (a) The calculated absorption Figure 4.2: (a) The calculated absorption

intensities for all transitions *Ig/5 —*F3/s-
Dy 5 at 300 K for o-polarized Nd**:LiYF,.
(b) The experimental absorption spectrum
of o-polarized Nd3+:LiYF, (1.5 wt.% Nd>*)
at 300 K. The intensities are in arbitrary
units.

intensities for all transitions Iy, —*Fj/,-
Dy, at 300 K for m-polarized Nd3*+:LiYFy.
(b) The experimental absorption spectrum
of m-polarized Nd3+:LiYFy.
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Figures 4.1 and 4.2 show the results for Nd3*:LiYF,;. The experimental spectrum is
taken from Ryan and Beach [69]; the paper also contains the different CI parameters used.
These are shown in Table II of paper IV. The agreement with experiment is generally good.
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Figure 4.3: (a) The calculated absorption intensities for all transitions *Ig 5 —*F3/5-*Dj5 /> at 300
K for Nd*+:YAG. (b) The experimental absorption spectrum of Nd**: YAG (1.0 wt.% Nd) at
300 K. The intensities are in arbitrary units.

Figure 4.3 shows good agreement with experiment (Kramer and Boyd [70]) for Nd3*:YAG.
The peak widths in the calculated spectrum are slightly too large, which suggests that the
ions are “too mobile” in the MD simulation. This aspect will be discussed in the next chap-
ter. Since Nd3t:YAG is optically isotropic, the oscillator strengths have been calculated as
the average of P, (summation over q=-1,0,1); see Eq. (4.12).
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Figure 4.4: The calculated absorption intensities for all transitions from *I, /2 to ‘F, /2—2D5 /2 at
300 K for Nd203. (a) and (b) show the m-polarized contribution to the spectrum. (c) and (d)
show the o-polarized contribution. Note the difference in scale between (a), (b) and (c), (d).

The theoretical oscillator strengths for Nd; O3 calculated for all the 4Ig /2 —4F, /2—2D5 /2
transitions at 300 K are plotted in Figure 4.4. It is interesting to note the large oscillator
strengths around 570 nm. These are the hypersensitive transitions, which are partly ex-
plained by the large < “Iy,||[U®|| *G5/ > value [64,65], and by the sensitivity of AWM and
A,(Is) to changes in environment (Edvardsson [63,68]). Note that no inhomogeneous dielectric
mechanism have been considered in this calculation. No experimental spectrum is available.
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Figure 4.5: The calculated absorption spectrum for Er3*:Y,0j3 in arbitrary units (a). The
calculated spectra (a, b and c) are plotted with the Cy and C3; contributions weighted; the
experimental spectra are plotted in (d) and (e).

The calculated absorption spectrum for Er®t:Y,03 are shown in Figure 4.5. Since
Er3t:Y,0;3 is cubic, Eq. (4.12) can be used to calculate the oscillator strengths. The
only experimental absorption spectrum available (Morrison et al. [60]) is plotted in (d) and
(e). Plots (b) and (c) are the corresponding calculated transitions with the Cy and Cs;
contributions weighted. The qualitative agreement between experiment and theory is again
clear as regards the overall shape of the transition manifolds; we see, however, that the
multiplets are shifted slightly to lower energies. This is a consequence of uncertainties in the
free-ion parameters. The case of Er®t:Y,03 will be returned to in Chapter 6 because of its
two different erbium sites. It will be seen that, for some transitions, the contribution from
ions in the C3;-site cannot be ignored, despite the fact that the site is a crystallographic
inversion centre.

It must be remembered that, prior to our refinement of the Judd-Ofelt theory, in most
intensity calculations the Stark level transitions were treated as degenerate. In Figure 4.6
(c) Judd-Ofelt intensities have been assigned to each Stark transition for Nd3*:YAG. The
differences are clear.
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Figure 4.6: (a) The calculated absorption intensities for all transitions from I/, to *F3/5-2Dj 5
at 300 K. (b) The experimental absorption spectrum for 1 wt% Nd:YAG at 300 K. (c) The
calculated absorption spectrum, when Judd-Ofelt intensities have been assigned to each Stark
transition. (d) The absorption spectrum summed over 100 configurations obtained from an MD
simulation at 300 K.

Figure 4.6(a) shows the first calculation for Nd**:YAG. No CI effects and no inhomo-
geneous mechanism were considered; only crystallographic ion-sites were used. (b) is the
experimental spectrum, and (d) the result after the MD based treatment. Figures 4.6(c) and
4.3 should be compared to gain an impression of the importance of refinements and the MD
treatment.

The MD treatment allows inhomogeneous line broadening to be seen in all spectra. See,
for example, Figure 4.6(d).



Chapter 5

Molecular dynamics simulation

5.1 Introduction

The molecular dynamics (MD) simulation technique has been shown to be an important
tool in calculating polarized absorption/emission oscillator strengths and the corresponding
spectra (papers I, II, IV and V). Instead of merely using the experimentally determined
crystal structure in the crystal field calculations, MD simulation generates an ensemble of
physically realistic environments for the rare-earth ions. Details of the MD technique used
can be found in [63, 71, 72]; an alternative approach is presented in [73,74]. The crystal
field parameters have shown to fluctuate greatly as a consequence of the many different
rare-earth environments. These fluctuations would appear to be somewhat too large, since
the calculated spectra are broader then the corresponding experimental spectra. This can
probably be taken as an indication that the MD potentials used should be reexamined
(which is not surprising since the potential parameters are only fitted to reproduce the
crystal structure; moreover only a simple pair-potential has been used). The incorporation
of the Debye-Waller factors into the fitting procedure and the use of a many-body potential
would probably improve the simulation, as regards the band-widths. The fluctuations in the
CF parameters implys that the energy matrix must be recalculated for each MD generated
environment in order to get the new Stark energies and transition probabilities.

The MD simulation has made it possible to calculate transition probabilities for rare-
earth ions in sites with inversion symmetry, e.g. Cs; in Er*T:Y,03 (paper V), and to address
the case of hypersensitive transitions (see Edvardsson [63,68]). Granted the availability of
more reliable MD potentials, both line-shape as well as the analysis of a local structure for
amorphous systems can be accessed by the method.

5.2 The theory

A molecular dynamics approach involves the solvation of the 3N coupled Newton’s equations
of motion for an N particle system. The equation for the i-th particle is:

mzﬁ == Fz == —sz (Z = 1, ,N) (5.1)
where V; is the ion-ion potential in Born-Mayer-Huggins form:
N
Vi =) aiqj/rij + Aij exp (—rij/ pij) — Cij /15 (5.2)
i#]
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The three terms in Eq. (5.2) are: a long-range Coulombic term, a short-range repulsive
term, and an weak van der Waals term. The potential parameters A;;, p;; and C;; are fitted
to reproduce a known crystal structure.

The MD system is assumed to be isolated, i.e. the microcanonical ensemble has been
assumed with conservation of the total energy F, the volume V', and the number of particles
N. A more advanced ensemble must be used in a more rigorous MD treatment. The simula-
tion is initialized by assigning the velocities according to a Maxwell-Boltzmann distribution:
pr = (1/Z) exp (—BE;), where Z = Y, exp(—(E;) and § = 1/(kgT); p, is the probability
for a system in state r with temperature 7' and energy E,. This assignment is followed by
an equilibration phase of for several thousand time-steps, AT = 3 fs. The system is said to
be equilibrated when the target temperature is reached.

Periodic boundary conditions are used and the Ewald summation technique (Ewald [75])
is exploited to take accurate account of the long-range coulomb interaction. The technique
is outlined briefly in paper VII.

5.3 Results

The solution to Newton’s equations of motion involves the positions, velocities and acceler-
ations for each of the particles in the simulation box at each time step.

0.2 10K
= - -
S N
S 0
< N -
= - - Nd .
- (b)
-0.2 -
-0.1
0 -0.2
[A/Z12.0] 0.1 0.2 0.1 0
[A/12.0]

Figure 5.1: The trajectories of a Nd®**-ion and its nearest-neighbours at 300 K (a) and 10 K (b)
in Nd®+:YAG. The figure includes 100 snapshots.
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Figure 5.2: Convergence plots for |A((,k) |? [em~*+1)] as a function of the radius of the summation
sphere around the Nd**-ion for ten typical Nd®>*-ion environments at (a) 300K and (b) 10K.

Taking an example: the trajectories for a Nd3* and its eight nearest neighbours in Nd3+:YAG
have been plotted in Figure 5.1. The figure shows 100 snapshots at T=300K and T=10K.
Figure 5.2 shows the convergence of |A((1k) |2 as a function of r, the radius of the summation
sphere, at 300K and 10K for the environments of ten different Nd3t-ions. All ions within
a distance 7 of the Nd3*-ions are included in the summation (3.26). We can note the large
difference in the seemingly converged values. However, as pointed out in the previous chap-
ter, the ions would seem to be too mobile. This will, of course influence the crystal field
parameters, and the very large fluctuations in \Agk)|2 presented in Figure 5.2 may well be
exaggerated.

In order to see the effects of crystal-field parameter fluctuations more clearly, Figure 5.3
shows how the energies vary as a function of environment for the multiplets Iy /o and *I; /o
at 300 K for (a) NdpO3 and (b) Nd3T:LiYFy. It is quite clear that these variations must be
taken into account when we later construct a polarized absorption spectra for NdoOgz and

Nd3+:LiYFy.
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Figure 5.3: The Stark levels (in cm™!) for the two lowest-lying multiplets *I, /2 and 1,4 /2 are
plotted as a function of configuration number. The configurations are in the order generated in
the molecular dynamics simulation.



Chapter 6

A structural probe, materials
design, laser properties

In this Chapter some ideas will be presented as to how the computational techniques de-
scribed previously may be applied after further development. There are many areas where
access to the enormous amount of information hidden in rare-earth absorption/emission
spectrum could be exploited. An understanding of Stark-Stark transition amplitudes and
energies is crucial, since these are a function of the crystal field, and therefore a direct finger
print of the structure surrounding the rare-earth ion. Some parts of the spectrum will de-
pend on the long-range structure and are therefore not directly usable: other parts depend
only on the local structure around the rare-earth ion, and it is from these of course in these
that the interesting information can be extracted.

That the Stark-Stark transition amplitudes and energies depend strongly on the crys-
tal field should make it possible, in principle, to reverse the calculation and extract local
structural information (distances, angles and coordination numbers, etc.) from an absorp-
tion/emission spectrum [76]. Similar techniques have been used when fitting the Stark energy
levels to experiment [56,60,61,77-84]. However, in their studies a certain local symmetry
assumption have been made, implying that only a limited number of the crystal field parame-
ters can be allowed to vary freely in the fitting procedure. Such a technique cannot be applied
to the calculation of intensities, because of the large fluctuations in the CF parameters as a
result of the thermal motion of the ions (see Chapter 5). Since the calculation of polarized
absorption spectra has been shown to be successful for a number of neodymium and erbium
compounds, the CF parameters needed to reproduce the experimental spectra are accessible
and the local structural information should therefore also be available. This problem has
partially been treated by Brawer and Weber [85,86] and Brecher and Riseberg [87] with
respect to the local structure in glasses.

The only problem which arises in using this approach as a “structural probe” is the
simulation of the long-range crystal field needed to construct the energy matrix. Although
certain parts of the spectrum are characterized by the crystal field resulting from the local
structure some realistic model must be assumed to represent the remainder of the struc-
ture. If the long-range crystal field is incorrectly described, certain eigenstates will acquire
incorrect energies which then interfer with those parts of the spectra which depend only on
the local crystal field. It is an insuperable task to distinguish between the transitions which
depends on the local structure and the superimposed transitions which have contributions
from the long-range crystal field. It is possible that the problem can be partly overcome by
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constructing some intermediate to long-range average model structure.

Let us examine, for example,the case of Nd*t:LiYF4. ”Local structure” can generally
be treated viewed as a superpositions of the most common coordination polyhedra; each
appropriately distorted and with different 7. In LiYF4 the Nd3*-ion ”sees”, for example,
two tetrahedra rotated 7 with respect to one another and with 7y slightly larger then ro
(r1 = 2.297A and ry = 2.244A). If the absorption spectrum were calculated for this nine-ion
cluster (see Figure 6.1), the resulting polarized absorption spectrum bears no likeness to
seem to what is observed experimentally. This is because the long-range crystal field has
been treated completely incorrectly (not treated at alll). With an incorrect energy matrix,
incorrect eigenstates and energies will be the result. Is there some strategy by which we can
access this structural information?

Figure 6.1: The local environment
around neodymium in Nd3+:LiYFy, see
Garcia and Ryan [88]. The two tetra-

hedra are rotated § with respect to one

another and with r; slightly larger then
ro (r1 = 2.297A and ry = 2.244A).
2500 4111/2 (b) 6500 4115/2 (d)

Figure 6.2: The calcu-
lated Stark levels (solid
lines) for the four low-
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This sensitive influence of ”structure” on the calculation described so far can be best
illustrated through some examples. Figure 6.2 shows the Stark energies [cm 1] for the lower
multiplets (*I /25 T, /25 T3 /2 and s /2) plotted as a function of radial contraction from
the experimental geometry of Nd3+:LiYFy.

Similarly, Figure 6.3 shows the contributions from Er?*-ions (Er*:Y503) in Cy- and
Cs;-symmetry sites. We see clearly the importance of taking the thermally induced motion
of the ions into account (paper V). The contribution from Er?*-ions in Cs;-symmetry sites
is certainly not negligible, especially around 300nm and 380nm.

C'y-site

o S

ng'—Site

5
200 250 300 350 400 450 500 550 600 650 700
Wavelength (nm)

Figure 6.3: The calculated absorption spectrum for Er®+:Y,03 in which the contributions from
Er3t-ions in Cy-symmetry sites are plotted above the line, and from Er3*-ions in Cs;-symmetry
sites below the line, respectively.

A complete procedure for solving the problem illustrated here still lies some time ahead. The
problem is by no means unsolvable, but requires computational capability not yet within our
reach. However, when solved it will not only be possible to extract local structural infor-
mation for materials containing rare-earth ions (including amorphous polymers and glasses),
it can also be used as a tool for designing materials with some desired optical property
(expressed in terms of its absorption/emission spectrum).

A third area of application would be the prediction of laser properties for potential host
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materials. For this we would need the calculated polarized emission spectrum. A scheme for
calculating such a spectrum is outlined in Section 4.3. The radiative life-time (7) is given
directly by the inverse of the oscillator strength and is therefore readily derivable.

A more delicate problem would be the calculation of the stimulated emission cross-section:

S(if)
S TAN

where S(if) is the transition strength and A\ is the linewidth. The transition strength is
obtained directly given from the calculated oscillator strengths. The linewidth is, in principle,
extractable from the MD treatment but will be sensitive to the potential used [Eq. (5.2)], and
these were only fitted to reproduce the crystal structure; a many-body potential derived from
an ab initio treatment would, of course, be preferable. The standard method for calculating
the stimulated emission cross-section [Eq. (6.1)] has been to use Judd-Ofelt theory to derive
S(if). However, this only gives the oscillator strengths between J-manifolds; current work
has improved this type of calculations.

Yet another and possibly even more interesting application of the simulation technique
outlined herein is the calculation of branching ratios (). This branching ratio is a measure
of the percentage of emission for given transition from a state ¢ with respect to all other
transitions from this state, i.e. summation over the final state j:

S(ij)

Bij o Ej S(ij) (6.2)
Since, in this thesis treatment S(ij) has been refined (compared to the Judd-Ofelt theory)
to give the individual Stark level transitions, we are no longer limited to considering i and
j as J-manifolds, but now as individual Stark levels. It should, in principle, be possible to
predict the type of structure a potential host-material should have in order to deliver the
required branching ratios.

It is important to note at this point that these calculations and predictions are only valid
within the approximations made in the applied model; the most severe of these is the use
of an electrostatic multipole expansion for the rare-earth environment. This approximation
is considered by many to be a gross oversimplification. We have shown it to be valid and
sufficient for the compounds investigated here.

Returning to the question implied by the title of the thesis “Rare-earth polarized ab-
sorption spectra as a structural tool” (?): it has been shown convincingly that the ground
has now been laid for the evolvement of an exciting method in which the power of modern
computers combined with the intrinsic accuracy of modern optical spectroscopy to create a
valuable “structural tool”.

(6.1)




Chapter 7

Brief summary of results and
concluding remarks

It has been demonstrated that polarized absorption spectra can be simulated for a number
of rare-earth doped compounds (papers I, II, IV, V and VI). The key to this has been
the use of molecular dynamics together with Racah algebra and the theoretical framework
for rare-earth energy levels developed by Rajnak, Wybourne, Judd, etc. This theoretical
framework has been merged with a molecular dynamics simulation technique to provide a
procedure capable of reproducing experimental polarized absorption spectra.

It has been found that the free-ion CI parameters fitted to reproduce experimental energy
levels will also yield good eigenvectors when the energy matrix has been diagonalized. The
CI parameters have been shown to be crucial to the success of the method (paper IV).

The MD based approach has made it possible to show that sometimes a large error
is made if only crystallographically determined positions are used to calculate the crystal-
field parameters needed for the intensity simulation. The many different local environments
experienced by the rare-earth ions are shown to induce very large fluctuations in the crystal-
field parameters. It has also been shown that, for some transitions, it is not possible to ignore
contributions from ions located at inversion centres. Thermal motion breaks this inversion
symmetry, thus allowing the dipole transitions (paper V).

Since the shielding parameters, o, are critical, the Sternheimer method have been used
to calculate o} for the whole series of rare earths using relativistic wavefunctions. The
different < 7* > integrals were evaluated in the same paper (III).

In contrast with the ideas of many in this field, it is thought that the electrostatic
model used in the multipole expansion of the rare-earth ion environment involves no gross
oversimplification. The use of an electrostatic model within an MD approach should be
examined fully before invoking the more “sophisticated” crystal-field models.

A scheme for calculating polarized emission spectra is proposed. Also, the idea of 'revers-
ing’ the simulation to gain information about the local structure surrounding the rare-earth
ions is put forward. A number of potential areas of application for the simulation technique
are also suggested.

The possible sources of error in the simulation technique outlined are:
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a) The MD potential parameters are inadequate since they have only been
fitted to reproduce the crystal structures. Moreover we have only used
pair potentials; inclusion of appropriate Debye-Waller factors would im-
prove the MD parameters, since these include information about the
dynamics of the system.

b) Uncertainties in the crystal-field parameters A,(Jk) through neglect of the
effects of covalency and the Ewald summations for k=1,2,3.

c) Correlated crystal-field effects are not considered.

d) Uncertainties in the matrix element of the different tensor operators
which arise from errors in F¥, ¢ and the CI parameters.

e) The problem of labelling eigenvectors; labelling of the high-energy states
is difficult, since the eigenstates are a mixture of many (WUSLJM;)-
states.

The major advantages of the simulation technique outlined here are:

a) The calculated absorption/emission spectra are related directly to the
structure of the solid/liquid/amorphous material investigated.

b) The simulation technique is general and can be applied equally well to
solid, liquid and amorphous materials.

c) Since all computer code has been implemented locally, changes and im-
provements can easily be tested.

d) Temperature dependence can be treated explicitly.

Future work:

A number of clear routes for further development can be envisaged:
— Polarized emission spectra can be calculated.

— The range of usefulness of the method as a ”structural probe” should
be investigated further.

— Both CI parameters and Slater integrals are to be evaluated from first
principles. This cannot be done today through the inaccuracy of the
radial wavefunctions available.

— Computer-aided design of optical materials.



Appendix A

Some useful relations

There now follows a collection of relations that have been used throughout in the text.

A.1 Miscellaneous
Unitary operator:

1= > [9nlU'm;><+'nl'm]|

T ]l o/
Y'n'l'm;

The Wigner-Eckart theorem:

- ' k1
<4'n'l'mj | Tq(k) | ynlmy > = (=1)! ml( / )
—my q My
x <Al || T® || ynl >

A.2 n—j symbols

The 3j-symbols have the following relation to the Clebsch-Gordan coefficients:

J1 J2 j)

< Jijamima | jijejm >= (—1)_j1+j2_m[j]1/2<
mp Mo —m

and the 6j-symbol is defined through:

2 j3}_z
{j4 Js  Je

all m

x( s Je )( Ja  J2 Js )(j4 Js j3)
m1 MMy —Mg —m4 MMy Mg myg —Ms M3

Orthogonality relations:

. J1 J2 I3 J1 J2 J3
Z [.73]( ) ( , ) = 5m1m’1 (szm’2

l
jams mi1 MMmg M3 myp My Mms3

(_1)j4+j5+j6+Tn4+m5+m6( J1 J2 J3 )
mi1 Mo M3
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J1 J2 73 i J2 g 1
£ (52 2N 2 )

!
mimg N M1 M2 M3 mp m2 Mg

The sum of the products of three 35 symbols:

{jl J2 J3 }( o2 s ): S (—1)hHaHa b pa b

holo s mi mp m3 1 fiapia

] l l l ) l l l ]
x( il 3 )( 1 )2 3)( 1 2 Js) (A7)
my pH2 —H3 —MH1 M2 U3 n1 —H2 M3

The 3j-symbols possess a number of symmetry relations. For example an odd number
of permutations among the columns alter the phase by (—1)71*72%73, An even number of
permutations leave the phase unchanged. Example of the first case:

( i J2 g3 ): (_1)j1+j2+j3< joo g g3 ) (A.8)
mp Mg m3 mz M1 M3
Changing the signs of the magnetic quantum number gives:
( jioje s ) _ (_1)j1+j2+j3< v d2 s ) (A.9)
mi mo ms —1m —mo —mg3

The 6j-symbols remains invariant under any permutation of columns and under transposition
of rows in each of any two arguments:

{31 J2 33}:{32 n Js} (A.10)
Ii Iy I3 lo 11 I3
S L1
{ o oJ2 73 }:{ .1 .2 J3 } (A1)
li Iy I3 J1 g2 I3
Sum rules for 6j-symbols:

I S L B (A12)

LIy 1 Lol U

Z(—l)jHHI[j]{ Ji g2 J }{ J2 i g }:{ J2og1J } (A.13)

J Lol 1 gl U L ol 1



Appendix B

An alternative scheme; the
seniority number

Following Judd [31], this scheme gives the set of quantum numbers (I"vUSLMgM}) (which
should be compared to (I"WUSLMgM7p) in Section (2.2)). This is the more natural approach
to the problem of classifying [™ states, since it is the result of studying the commutators of
double-tensor operators. This is more natural, since in this scheme, the spin and orbital part
are not treated as two separate entities (as is done above). Instead, operators of type T(Kk)
are used with (2x + 1) spin angular momentum components and (2k + 1) orbital angular
momentum components. This double tensor is defined to behave as an irreducible tensor
of rank x with respect to S, and as an irreducible tensor of rank k with respect to L. The
different commutator relations used to define the algebra of these double-tensor operators
can be derived analogously to single-tensor operator commutation relations in Section (2.2).
Starting by defining the reduced matrix elements of a double-tensor operator by:

<n/s'l"|| wlkk) || nsl >= 0105501 (B.1)
leads to the following definition of the commutation relations for double-tensor operators:

(kik1) o (Kaka)) _ AT, (K3k3) (B.2)

[wmql ’wﬂzqz ]_ Hovp w3 qs

with the structure constants [p = (k171), v = (kem2), A = (k37m3), 0 = (k1q1), p = (k2g2)
and 7 = (k3q3)]:

C;/);up = Z [kg](_1)2s+2l—7r3—q3{(_1)n1+nz+n3+k1+k2+k3 ~1)
K3k3m3qs
ki ko K ki ks k
O (CE e (R N
s s s I 1 1 M T —T3 Q@ —q3

Since w;';k) satisfy Eq. (B.2), they can be taken as infinitesimal operators of some groups

whose irreducible representations are of interest. Racah [6] and Judd [31] have shown that the
following succession of groups and subgroups in 4/+2 dimensions [(21+1)?(2s5+1)? = (41+2)?]
is possible:

U4l+2 D) SU41_|_2 D) SU21_|_1 x SUs D R2l+1 x SUs (B.4)
Alternatively:
Ugiy2 D SUgiy2 O Spay2 D Ryrp1 x SU (B.5)
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where Sp is the symplectic group. The representations of SUs are defined by the spin multi-
plicity 25 + 1. The seniority number (v) (discussed in great detail in Judd [31]) is defined to
be v = Y 0y, where (6109 ...09.11) are the representations of the symplectic group Spyi2-
When decomposing Spyj+2 — Roir1 X SUs, the irreducible representations of Spgjio will
thus decompose into the irreducible representations of Ry, and SUs. The branching rules
for the case of f2 are given in Table IT (according to Judd [31]).

Table II. Sp4l_|_2 — R2l+1 X SU2

v | [o109...07] | 29 W

0 | (0000000) | 1(000)

1 | (1000000) | 2(100)

2 | (1100000) | 3(110) *(200)

3 | (1110000) | 4(111) 2(210)

4 | (1111000) | 5(111) 3(211) 1(220)

5 | (1111100) | 6(110) %(211) 2(221)

6 | (1111110) | 7(100) 5(210) 3(221) !(222)
7 | (1111111) | 8(000) (200) %(220) 2(222)

Since the representations (wjwews) of R7; decompose into the irreducible representations
L of R, it is seen from Table II that (W) can be dropped and replaced by (vS). The senior-
ity number indicates in which configuration 1“ the term (2°T!L) appears for the first time,
i.e. it cannot be constructed from {*~2 by adding the pair [? (1S). A Table III corresponding
to Table I can now be constructed using this alternative scheme.

The seniority number has been discussed since it enters into the factorization of the frac-
tional parentage coefficients.

Table III. Quantum numbers for f3

S | v | (wug) | L
3/23] (00) |5
(10) | F
(20) | DGI
12 [1] (o) |F
1/2 | 3| Qv | PH
(20) | DGI
(21) | DFGHKL




Appendix C

The coefficients of fractional
parentage for f°

Instead of trying to solve the complicated system of equations (2.23), Racah showed (using
lemma (11) of [6]) that the fractional parentage coefficients break up into a number of
factors, each depending on fewer variables. This is highly favourable, since these factors can
be calculated or tabulated. For the case of f”, the fractional parentage coefficients factor
out to (Eq. (34) of [6]):
< YWU' S'L) fWUTSL |} f"WUTSL >=< f2V'S' + f [} f3vS >
X <WU + f|WU><UTL +f|UTL > (C.1)

where v is the seniority number. As an example, the following fractional parentage coefficient
will be calculated < f2((110)(11)3P)f(111)(20)*D |} £3(111)(20)*D >. From Table II, it is
seen that the seniority number corresponding to (111)(20)*D is v = 3 and to (110)(11)3P
is ¥/ = 2 . Racah has given the following formulae (Eq. (52) and Eq. (56) in [6]) for the
calculation of the first factor in Eq. (C.1) and its phase € < /S’ [}vS >.
1
<" ly-18- 5 HLHwS >2= (4l +4-n—v)(v+25+2)8
/12n(2] + 2 —v)(2S + 1)] (C.2)

<P 1S L LS S (44— n v - 25)(S +1)
/12n(2l + 2 — v)(2S + 1)] (C.3)

<I"lyy18-— % +1|H"WS >2= (n—v)(4l + 6 — v +25)8S
/[2n(20 + 2 — v)(25 + 1)] (C.4)

<" lv418+ % + 1| H"wS >2=(n—v)(4l +4—v—25)(S + 1)
/[2n(20 + 2 — v)(25 + 1)] (C.5)

and the phase factors:

e< V'S |8 >=(-1)% for v odd (C.6)
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e< VS WS >=(=1)5 T2 for v even (C.7)

The second and third factors in Eq. (C.1) are found in Table III and Table IV of Racah [6].
The first factor in Eq. (C.1) becomes, using [Eq. (C.2)]:

<fW=28=1 +f|}f3u:3S:g>:1

The second factor in Eq. (C.1) is:

<W'=(110) U' = (11) +f|W = (111) U = (20) >= — g

according to Table IIT of Racah [6], and the third factor in Eq. (C.1) is:

27
<U=11)7"L'=1+f|U=20)7 L=2>=— )
according to Table IV of Racah [6]. The phase is given by Eq. (C.6) and € < 'S’ [}vS >=

—1. Together, this gives:

3

< f2((110)(11)3P) £(111)(20)* D |} £3(111)(20)* D >= —\@

The remaining coefficients of fractional parentage are derived using this method.



Appendix D

The metric tensor and Casimir’s
operator

Having derived the expressions for the structure constants [Eq. (2.15) and Eq. (B.3)], the
metric tensor (well known from the theory of general relativity) can be expressed for the
group in question using the following definition:

Jou = CopChr (D.1)
Inserting the structure constants Eq. (2.15) into Eq. (D.1) gives:
ki ko k3 Y20kk 0g—q
o = 3 lallks)(~1)2{1 = (i f BB B0 L b (D2)
kzks /A (k1]

where Eq. (A.8), Eq. (A.9), Eq. (A.6) and the condition ¢; + g2 — g3 = 0 have been
used. Imposing various restrictions on the right-hand side of Eq. (D.2) makes it possible to
describe the metric tensor corresponding to the groups in Eq. (2.17) and Eq. (2.18). Eq.
(D.2) is the metric tensor for GLgj41. According to Judd [31], the following metric tensors
are obtained for the groups Usjy1, SUg+1, Rop1 and Ga, respectively:

Ok, K} 5(11*(1'1

gaN(U2l+1) = (_1)q12{1 - 51610}[1] [kl] (D3)
5k1k' 5!11—61'
Gou(SUi11) = (~1)20)] =0 (D.4)
Op. 100, 1
Gou(Rary1) = (~1)% (21 — ”M[T (D.5)
gon (o) = (—1ym 42838000, (D.6)

(k1]

Eq.(A.12) and Eq.(A.13) have been used in passing from Eq. (D.2) to Eq. (D.3).

The metric tensor is used in the definition of Casimir’s operator for the various groups.
This operator will be shown to be very useful for calculating matrix elements for two-particle
operators (associated with linear configuration interaction), since its eigenvalues can be cal-
culated. The Casimir operator commutes with all others of the group, and is defined by:

G =9¢"" XX, (D.7)

45



46 APPENDIX D. THE METRIC TENSOR AND CASIMIR’S OPERATOR

g°" is related to g, through g°#g,, = 1. The Casimir operators for the group that have
been used [G(Ur), G(SU7), G(R7), G(G2) and G(R3)] are given by [using Eq. (D.3) to Eq.
(D.6)]:

GU;) = i qm[k)] (kq) = i M[k]((j(@ LU %)

k=0,q k=0 14
= i 1 5k°}[k R)? (D.8)
k=0
6 1 6 1
G(SU7) = Y () KUPUY) = 3 =kE® . u®)
k=1,q 14 k=1 14
6
= Y SIHE®) (0.9)
k=1
6 1 6 1
GR:) = S (-1 WuPu® = 3 SRE® . u®)
odd k=1,q 5 odd k=1
= ZG: %[’ﬂ](U(k))2 (D.10)
odd k=1
G(G2) = Z )9 [k k)U( ) _ 4{3(U(1) UMY +11(U® . uG®)
k=1,5,q
- i{?)(U‘l)) FUEO)) (0.11)
G(Rs) = > (—1)q[k]Uq(’“)U£'f]) = 3 . g0y = 32
k=1,q
= oL (D.12)

Il+1)(2+1)

where the relation L=+/I(I + 1)(2/ + 1)U(") has been used in Eq. (D.12). The eigenvalues are
given by (Racah [6], Judd [31], Edmonds and Flowers [89] and Rajnak and Wybourne [40]):

1 7
<A A7 | GUR) | Mg, Ag >= 33 > (i +8 —2i) (D.13)
=1

Note that, for the cases of f3 and f!1, it is not necessary to sum beyond i = 3, since \; = 0
for ¢ > 3, which can be seen from Table 5-1 in Judd [31].

1 7
<Aoo A7 | GISUD) [ Mde .o he >= o2 3 Mi(hi+8 = 2i) — n (D.14)
i=1

1
< wiwows | G(Ry) | wiwews >= E[wl(wl +5) + wo(we + 3) +w3(ws +1)]  (D.15)
1
< U1U2 | G(Gg) | ULUg >= E[U% + uru + u% + duq + 4’(1,2] (D.lﬁ)

< LMy | G(Rs) | LMy, >= L(L+1) (D.17)

3
I+1)(20+1)
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Summary of the papers

II.

III.

IV.

VI.

VIL

Part of the optical absorption spectrum is calculated for the Nd3t-doped Nat 3”-
alumina using a molecular dynamics (MD) based approach. Judd/Ofelt (J/O) theory is
modified (and several approximations removed) to treat polarized transition intensities
for rare-earth ions in a solid host. It is demonstrated that ions in different local
environments contribute differently to the absorption spectrum and, particularly, how
the polarization of the various transitions changes for ions occupying different sites.

The complete polarized absorption spectrum is for the first time simulated for the well
known laser host material Nd3T:YAG (yttrium aluminium garnet, Y3Al;015) using a
molecular dynamics (MD) based approach. The theory is presented in detail.

The Sternheimer method is used to derive shielding parameters for the whole series of
rare earths using relativistic wavefunctions. It is found that the shielding parameter
o9 of the 4f electronic shell is decreased compared to earlier calculations.

It is shown that inclusion of linear and non-linear configuration interaction (CI) pa-
rameters greatly improves the simulated polarized absorption spectra for Nd>*:YAG
and Nd*T:LiYF,. It is found that the CI parameters fitted to reproduce the Stark
energy levels also give good eigenvectors (needed for the intensity calculation). The
inhomogeneous dielectric mechanism is compared to the standard dipole mechanism.
The theory is presented in detail.

As a consequence of the thermally induced fluctuations of the ions in Er3*t:Y, 03, it is
shown that the intensity contributions from ions in C3;-sites (a site possessing inversion
symmetry in the static case) cannot be discarded. The contributions from the Cs-sites
and Cj;-sites are compared.

Energy levels and complete polarized oscillator strengths were simulated for NdsOgs
and Nd3>T:LiYF,. The simulation was static (no MD simulation performed).

In performing ab initio molecular orbital calculations on crystals, the crystal is usually
modelled as a cluster of atoms surrounded by a finite set of point charges. This work
presents two methods for determining point charges which accurately reproduce the
periodic crystal field in the region of the cluster atoms for any unit cell whose unit-cell
parameters are known.
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